Direct Surface Extraction from Smoothed Particle Hydrodynamics Simulation Data
نویسندگان
چکیده
Smoothed particle hydrodynamics is a completely mesh-free method to simulate fluid flow. Rather than representing the physical variables on a fixed grid, the fluid is represented by freely moving interpolation centers (”particles”). Apart from their position and velocity these particles carry information about the physical quantities of the considered fluid, such as temperature, composition, chemical potentials etc. Being completely Lagrangian and following the motion of the flow, these particles represent an unstructured data set at each point in time, i.e. the particles do not exhibit a spatial arrangement nor a fixed connectivity. To visualize the simulated particle data at a certain point in time, we propose a method that extracts surfaces segmenting the domain of the particles with respect to some scalar field. For scalar volume data, isosurface extraction is a standard visualization method and has been subject to research for decades. We propose a method that directly extracts surfaces from smoothed particle hydrodynamics simulation data without 3D mesh generation or
منابع مشابه
Numerical Simulation of Squeezed Flow of a Viscoplastic Material by a Three-step Smoothed Particle Hydrodynamics Method
In the current work, the mesh free Smoothed Particle Hydrodynamics (SPH) method, was employed to numerically investigate the transient flow of a viscoplastic material. Using this method, large deformation of the sample and its free surface boundary were captured without the cumbersome process of the grid generation. This three-step SPH scheme employs an explicit predictor-corrector technique an...
متن کاملSimulation of Cold Rolling Process Using Smoothed Particle Hydrodynamics (SPH)
Regarding the reported capabilities and the simplifications of the smoothed particle hydrodynamics (SPH) method, as a mesh-free technique in numerical simulations of the deformation processes, a 2-D approach on cold rolling process was provided. Using and examining SPH on rolling process not only caused some minor developments on SPH techniques but revealed some physical realities. The chosen t...
متن کاملInvestigation on the sloshing effect in a 2D tank under harmonic excitation using Smoothed Particle Hydrodynamics (SPH) and Finite Volume method (FVM)
Abstract Sloshing describes liquids motion in the semi-filled tanks, and exerts dynamic loading on its walls. This effect is of great importance in a number of dynamic systems e.g. aerospace vehicles, road tankers, liquefied natural gas carriers, elevated water towers and petroleum cylindrical tanks. Pressures insert impacts which are important for structural strength evaluation and its co...
متن کاملIncompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملInvestigating the Third Order Solitary Wave Generation Accuracy using Incompressible Smoothed Particle Hydrodynamics
This paper examines the generation and propagation of a Third order solitary water wave along the channel. First the Incompressible Smoothed Particle Hydrodynamics (ISPH) numerical method is described and the boundary condition handling method is presented. The numerical model is then used to simulate solitary wave propagation along the fixed depth channel. The numerical results are compared wi...
متن کامل